PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

Efficient Uncertainty Analysis of Wind Farms in the Time Domain using the Unscented Transform

> Rudimar Althof Moisés Ferber

Federal University of Santa Catarina

rualthof@grad.ufsc.br moises.ferber@ufsc.br

April 6, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Agenda

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

1 Introduction

2 Problem Statement

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

3 Methodology

Application

5 Results

6 Conclusion

7 Future

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion Future • Sustainable solutions attracting the attention of the energy industry;

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion Future

- Sustainable solutions attracting the attention of the energy industry;
- Several sources of renewable energy: solar, hydro, biomass, geothermal, tides, etc;

Figure 1: Renewable Energy Sources. (EDUCATION, 2017)

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion Future

- Sustainable solutions attracting the attention of the energy industry;
- Several sources of renewable energy: solar, hydro, biomass, geothermal, tides, etc;
- The wind energy has being used for more than 3000 years;

Figure 1: Renewable Energy Sources.(EDUCATION, 2017)

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

- Problem Statement
- Methodology
- Application
- Results
- Conclusion
- Future

- Sustainable solutions attracting the attention of the energy industry;
- Several sources of renewable energy: solar, hydro, biomass, geothermal, tides, etc;
- The wind energy has being used for more than 3000 years;
- Advantages:
 - The very low level of CO2;
 - 2 Economical benefits.

Figure 1: Renewable Energy Sources. (EDUCATION, 2017)

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodolo

Applicati

Results

Conclusion

Future

Figure 2: Wind Energy. (ALAGER, 2017)

• The wind energy systems design is strongly dependent on numerical simulations;

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodolog Application Results

Future

Figure 2: Wind Energy. (ALAGER, 2017)

- The wind energy systems design is strongly dependent on numerical simulations;
- Examples: power flow, fault effects and transient stability;

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion

Future

Figure 2: Wind Energy. (ALAGER, 2017)

- The wind energy systems design is strongly dependent on numerical simulations;
- Examples: power flow, fault effects and transient stability;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Software packages are capable of simulate large scale power systems and provide accurate results;

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion

Figure 2: Wind Energy. (ALAGER, 2017)

- The wind energy systems design is strongly dependent on numerical simulations;
- Examples: power flow, fault effects and transient stability;
- Software packages are capable of simulate large scale power systems and provide accurate results;
- Renewable systems are highly affected by uncertain inputs.

A common method for treating uncertainties

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion Future Uses a large number of samples, N_{MC}, based on the variable input's Probability Density Function (PDF);

A common method for treating uncertainties

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion Future

- Uses a large number of samples, N_{MC}, based on the variable input's Probability Density Function (PDF);
- A numerical simulation is executed for each sample;

A common method for treating uncertainties

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion

- Uses a large number of samples, N_{MC}, based on the variable input's Probability Density Function (PDF);
 - A numerical simulation is executed for each sample;
 - The N_{MC} results are evaluated and the output μ and σ are obtained.

A common method for treating uncertainties

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodolo

Applicatio

Results

Conclusion

Future

- Uses a large number of samples, N_{MC}, based on the variable input's Probability Density Function (PDF);
- A numerical simulation is executed for each sample;
- The N_{MC} results are evaluated and the output μ and σ are obtained.

Disadvantage

Low rate of conversion. Typically requiring thousands of simulations in typical electrical engineering problems in order to produce accurate results.

A common method for treating uncertainties

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodolo

Applicatio

Results

Conclusion

Future

- Uses a large number of samples, *N_{MC}*, based on the variable input's Probability Density Function (PDF);
- A numerical simulation is executed for each sample;
- The N_{MC} results are evaluated and the output μ and σ are obtained.

Disadvantage

Low rate of conversion. Typically requiring thousands of simulations in typical electrical engineering problems in order to produce accurate results.

There has been a great effort to develop more efficient Uncertainty Quantification methods.

The Unscented Transform Method (UT)

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement Methodology Application Results Conclusion Future One Example of an efficient UQ methods is the Unscented Transform method. (JULIER; UHLMANN, 1997)

The Unscented Transform Method (UT)

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

- Problem Statement
- Methodolog
- Application
- Results
- Conclusion
- Future

One Example of an efficient UQ methods is the Unscented Transform method. (JULIER; UHLMANN, 1997)

 Applied for uncertainty quantification by Menezes et al. (2008) and Ferber et al. (2014) as an alternative to the MC method.;

The Unscented Transform Method (UT) An alternative method

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

One Example of an efficient UQ methods is the Unscented Transform method. (JULIER; UHLMANN, 1997)

- Applied for uncertainty quantification by Menezes et al. (2008) and Ferber et al. (2014) as an alternative to the MC method.;
- The UT approximates a nonlinear mapping by a set of points, called *sigma points*;

The Unscented Transform Method (UT) An alternative method

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

One Example of an efficient UQ methods is the Unscented Transform method. (JULIER; UHLMANN, 1997)

- Applied for uncertainty quantification by Menezes et al. (2008) and Ferber et al. (2014) as an alternative to the MC method.;
- The UT approximates a nonlinear mapping by a set of points, called *sigma points*;
- Expected value and the variance are obtained from a weighted average using the simulation outputs. (MENEZES et al., 2008)

Problem Statement An Arbitrary Wind Energy System

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Application

Results

Conclusion

Future

• It includes: generation, transmission and distribution systems;

Problem Statement An Arbitrary Wind Energy System

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog Application Results

Conclusio

Future

It includes: generation, transmission and distribution systems;

• This is essentially a systems of nonlinear Ordinary Differential Equations (ODEs).

Problem Statement An Arbitrary Wind Energy System

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

- It includes: generation, transmission and distribution systems;
- This is essentially a systems of nonlinear Ordinary Differential Equations (ODEs).

The Main Goal

The problem considered in this paper consists of determining the average (μ) and standard deviation (σ) of any model's output, given the average and standard deviation of N uncertain parameters.

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog Application Results

Uncertain Input Parameters (N-dimensional vector)

$$\vec{U} = [U_1, U_2, ..., U_{N-1}, U_N]$$

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolo Applicatior Results

Conclusio

Future

Uncertain Input Parameters (N-dimensional vector)

$$\vec{U} = [U_1, U_2, ..., U_{N-1}, U_N]$$

Average Vector: $\vec{\mu_u} = [\mu_{u_1}, \mu_{u_2}, ..., \mu_{u_{N-1}}, \mu_{u_N}]$

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodolog Application

Conclusion

Future

Uncertain Input Parameters (N-dimensional vector)

$$\vec{U} = [U_1, U_2, ..., U_{N-1}, U_N]$$
Average Vector: $\vec{\mu_u} = [\mu_{u_1}, \mu_{u_2}, ..., \mu_{u_{N-1}}, \mu_{u_N}]$
Standard Deviation Vector: $\vec{\sigma_u} = [\sigma_{u_1}, \sigma_{u_2}, ..., \sigma_{u_{N-1}}, \sigma_{u_N}]$

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

Uncertain Input Parameters (N-dimensional vector)

$$\vec{U} = [U_1, U_2, ..., U_{N-1}, U_N]$$
Average Vector: $\vec{\mu_u} = [\mu_{u_1}, \mu_{u_2}, ..., \mu_{u_{N-1}}, \mu_{u_N}]$
Standard Deviation Vector: $\vec{\sigma_u} = [\sigma_{u_1}, \sigma_{u_2}, ..., \sigma_{u_{N-1}}, \sigma_{u_N}]$

Output from system model G.

$$Y(t) = G(ec{U},t)$$

 μ_y, σ_y

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

Uncertain Input Parameters (N-dimensional vector)

$$\vec{U} = [U_1, U_2, ..., U_{N-1}, U_N]$$
Average Vector: $\vec{\mu_u} = [\mu_{u_1}, \mu_{u_2}, ..., \mu_{u_{N-1}}, \mu_{u_N}]$
Standard Deviation Vector: $\vec{\sigma_u} = [\sigma_{u_1}, \sigma_{u_2}, ..., \sigma_{u_{N-1}}, \sigma_{u_N}]$

Output from system model G.

$$Y(t) = G(ec{U},t)$$

 μ_y, σ_y

Y(t) is a time-dependent random variable.

Methodology The Unscented Transform Method (UT) Equations

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodology

Application Results Conclusion Sigma points: $\vec{S} = [S_1, S_2, ..., S_{N_S}]$ Weights: $\vec{w} = [w_0, w_1, w_2, ..., w_{N_S}]$

Methodology The Unscented Transform Method (UT) Equations

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodology

Application Results Conclusion Sigma points: $\vec{S} = [S_1, S_2, ..., S_{N_S}]$ Weights: $\vec{w} = [w_0, w_1, w_2, ..., w_{N_S}]$

According to Menezes et al. (2008), the method to obtain μ_y is given as follows :

$$\mu_{y} = E\left\{G(\vec{\mu_{u}} + \vec{\hat{u}})\right\} = w_{0}G(\vec{\mu_{u}}) + \sum_{i=1}^{N_{s}} w_{i}G(\vec{\mu_{u}} + S_{i}) \quad (1)$$

Methodology The Unscented Transform Method (UT) Equations

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodology

Application Results Conclusion Sigma points: $\vec{S} = [S_1, S_2, ..., S_{N_S}]$ Weights: $\vec{w} = [w_0, w_1, w_2, ..., w_{N_S}]$

According to Menezes et al. (2008), the method to obtain μ_y is given as follows :

$$\mu_{y} = E\left\{G(\vec{\mu_{u}} + \vec{\hat{u}})\right\} = w_{0}G(\vec{\mu_{u}}) + \sum_{i=1}^{N_{s}} w_{i}G(\vec{\mu_{u}} + S_{i}) \quad (1)$$

And the variance:

$$\sigma_{y}^{2} = E\left\{ \left(G(\vec{\mu_{u}} + \vec{\hat{u}}) - \vec{\mu_{y}} \right)^{2} \right\}$$

$$= w_{0} \left(G(\vec{\mu_{u}} + \vec{\hat{u}}) - \vec{\mu_{y}} \right)^{2} + \sum_{i=1}^{N} w_{i} \left(G(\vec{\mu_{u}} + S_{i}) - \mu_{y} \right)^{2}$$
(2)

System Model Input random variable: Wind Speed

Figure 3: Probability density function of the wind speed, uniform, $\mu = 10$ m/s and $\sigma_s = 5,7735$ m/s (AUTHORS, 2017)

Random Variable: $\vec{U} = [Wind Speed]$ Average Vector: $\vec{\mu_u} = [Wind speed average]$ SD Vector: $\vec{\sigma_u} = [Wind speed standard deviation]$

System Model Matlab/Simscape Power System toolbox example

PEDG2017

- Rudimar Althof Moisés Ferber
- Introduction
- Problem Statement
- Methodolog

Application

- Results
- Conclusion
- Future

- Wind farm with six turbines of 1.5MW each;
- A fault of 0.5 p.u. happens at 0.03s;
- The DC bus capacitor voltage was analyzed.

Figure 4: Model of the wind farm consisting of: (1) 120 kV faulting system, (2) three phase impedance with mutual coupling between phases, (3) 120/25 kV transformer, (4) 30 km transmission line, (5) 25 kV distribution system, (6) DFIG wind turbine, and (7) transformer providing a neutral to the three phase system. (MATHWORKS, 2016)

System Model Initial Conditions

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodology

Application

Results

Conclusion

Future

The initial conditions need to be recalculated every time the system is modified.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The process includes changes in:

- Voltage source behavior;
- System inertia;
- Simulation time;
- Simulation mode;

System Model Initial Conditions

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodology

Application

Results

Conclusion

Future

The initial conditions need to be recalculated every time the system is modified.

The process includes changes in:

- Voltage source behavior;
- System inertia;
- Simulation time;
- Simulation mode;

Parameter	Value
Solver	Discrete, Fixed Step
Time step	$5 \mu s$
Time for one simulation	38.8s
Computer used	Intel® Core TM i7 CPU @ 2.40GHz

Table 1: Simulation details. (AUTHORS, 2017)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Application

Results

Conclusior

Future

• Monte Carlo method: 1000 samples;

PEDG2017

- Rudimar Althof Moisés Ferber
- Introduction
- Problem Statement
- Methodology
- Application
- Results
- Conclusior
- Future

- Monte Carlo method: 1000 samples;
- Unscented Transform: 5 simulations;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodology

Application

Results

Conclusion

Future

- Monte Carlo method: 1000 samples;
- Unscented Transform: 5 simulations;
- A fault of 0.5 p.u. occurs at t = 0.03s at different wind speeds;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PEDG2017

- Rudimar Althof Moisés Ferber
- Introduction
- Problem Statement
- Methodolog
- Application
- Results Conclusic

- Monte Carlo method: 1000 samples;
- Unscented Transform: 5 simulations;
- A fault of 0.5 p.u. occurs at t = 0.03s at different wind speeds;

Figure 5: Nominal voltage: 1150V; Peak value: \simeq 1185V; Lowest value: \simeq 1130V. (AUTHORS, 2017)

 V_{DC} Average behavior when the wind speed varies from 0 to 20 m/s.

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

Figure 6: Upper and lower voltage bounds at 0.1% confidence levels. $1100V < V_{DC} < 1200V$. (AUTHORS, 2017)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusior

Future

Figure 6: Upper and lower voltage bounds at 0.1% confidence levels. $1100V < V_{DC} < 1200V$. (AUTHORS, 2017)

Method	Time
Monte Carlo	6 hours and 36 minutes
Unscented Transform	2 minutes and 46 seconds

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Table 2: Time required by the presented methods. (AUTHORS, 2017)

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

Figure 6: Upper and lower voltage bounds at 0.1% confidence levels. $1100V < V_{DC} < 1200V$. (AUTHORS, 2017)

Method	Time
Monte Carlo	6 hours and 36 minutes
Unscented Transform	2 minutes and 46 seconds

Table 2: Time required by the presented methods. (AUTHORS, 2017)

The UT method \simeq 161 times faster than the MC method.

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Application

Results

Conclusion

Future

Simulation Details

Wind Speed

(0, 20)m/s

- 2 Line Capacitance
 - Positive Sequence Capacitance
 - Zero Sequence Capacitance
- Sault Level

(2.505, 7.515)*nF* (5.665, 16.995)*nF* (0, 1)*p.u*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3D Results DC Bus Voltage

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement Methodolog

Applicatio

Results

Future

Figure 7: Averages and voltages bounds at 0.1% confidence levels.

(日)、

э

3D Results Rotor speed p.u.

Figure 8: Averages and voltages bounds at 0.1% confidence levels.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

3D Results Rotor speed p.u.

Figure 9: Averages and voltages bounds at 0.1% confidence levels.

・ロト ・ 雪 ト ・ ヨ ト

э.

3D Results 25 KV bus, phase A's voltage.

Figure 10: Averages and voltages bounds at 0.1% confidence levels.

・ロト ・ 雪 ト ・ ヨ ト

э.

Conclusion Presentation Summary

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatior

Results

Conclusion

uture

- UT method applied to a relevant model based on a real world wind farm;
- The method presented a similar accuracy to the MC method;
- The time reduction factor over 160;
- This work the importance of considering the wind speed variability for components specification was shown.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Future tasks

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodology

Applicatio

Results

Conclusion

Future

• Implement multiple inputs;

- Evaluate multiple outputs;
- Application in different models.

References

PEDG2017

Rudimar Althof Moisés Ferber

Introduction

Problem Statement

Methodolog

Applicatio

Results

Conclusion

Future

ALAGER. ALAGER - Associao Latino Americana de Gerao de Energia Renovvel. 2017. (Accessed on 03/22/2017). Disponível em: (http://alager.org.br/energia_eolica.html).

EDUCATION, A. Renewable Energy Sources — AZURE Education. 2017. (Accessed on 03/22/2017). Disponível em: (http://www.azureeducation.org/renewableenergy/).

FERBER, M. et al. Adaptive unscented transform for uncertainty quantification in emc large-scale systems. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, v. 33, n. 3, p. 914-926, 2014. Disponível em: (http://dx.doi.org/10.1108/COMPEL-10-2012-0212).

ULIER, S. J.; UHLMANN, J. K. New extension of the kalman filter to nonlinear systems. In: INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS. *AeroSense*'97. [S.I.], 1997. p. 182–193.

MATHWORKS. Wind Farm - DFIG Detailed Model. [S.I.]: SimPowerSystems, 2016.

 $\label{eq:linear} $$ (https://www.mathworks.com/help/physmod/sps/examples/wind-farm-dfig-detailed-model.html $$ responsive_offcanvas). $$$

MENEZES, L. d. et al. Efficient computation of stochastic electromagnetic problems using unscented transforms. *IET Science, Measurement & Technology*, v. 2, n. 2, p. 88, 2008.

PEDG2017

Rudimar Althof Moisés Ferbe

Introduction

Problem Statement

Methodolog

Application

Results

Conclusior

Future

The End

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?