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ADAPTIVE UNSCENTED TRANSFORM FOR UNCERTAINTY 

QUANTIFICATION IN EMC LARGE-SCALE SYSTEMS 

Abstract. The Unscented Transform (UT) is a stochastic collocation method used for uncertainty 

quantification in nonlinear systems. This methodology is particularly interesting for EMC models with 

high-fidelity simulations which are time-consuming, since it demands fewer runs of the electromagnetic 

solver when compared to other classical methodologies. However, since the number of simulations 

required by the UT increases exponentially with the number of dimensions, this methodology becomes 

unpractical for large-scale systems. Nevertheless, an adaptive Unscented Transform can be an efficient 

alternative of uncertainty propagation for these large dimensional systems. 
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INTRODUCTION 

Non-intrusive uncertainty quantification methodologies are becoming a popular approach for the 

uncertainty propagation in complex systems. Many papers recently show the application of stochastic collocation 

methods or polynomial chaos decomposition in order to estimate the output variance due to parameter 

uncertainty in many fields of science [1]  to [14]. 

Additionally, the recent development and application of computational tools for electromagnetic 

compatibility allows accurate simulations of large-scale EMC systems. Many numerical technics of forward 

modeling in EMC can be mentioned, such as Finite Element Method (FEM), Transmission Line Method (TLM) 

and Partial Equivalent Element Circuit (PEEC). For instance, a model of a power converter can take into account 

the intrinsic parasitic effects of components, capacitive and inductive coupling of PCB tracks and nonlinear 

behavior of semiconductors. Thus, the conducted electromagnetic interference determined using this model is 

very accurate. However, the computational cost of one accurate simulation is usually very high. 

Many parameters of EMC models are actually known up to a certain precision only. This parametric 

uncertainty is not taken into account by EMC solvers. One possible approach is to develop a nonintrusive 

methodology, that uses the results of the solvers for different input scenarios and compute statistics of the output. 

An example of a methodology that has been applied successfully in EMC is the Unscented Transform (UT) [15] 

to [18]. 

Although the UT is much more efficient than Monte Carlo simulations to compute the statistical 

moments (average, mean, skewness and kurtosis), it is not appropriate for large-scale systems. The required 

number of simulations increases exponentially with the number of dimensions of the model. For instance, a 10-D 

model would require at least 2808 simulations to estimate the statistical moments of 1 output variable using 4
th

 

order UT approximation [16]. 

In this context, an adaptive UT for the uncertainty quantification of large-scale EMC models that 

explores the dominance of some dimensions over others is an interesting alternative to classical UT. This novel 

methodology will be presented and applied to three different large-scale models and compared to Monte Carlo 

method. 

UNSCENTED TRANSFORM 

The UT consists of estimating the statistical moments of an output random variable using the result of 

evaluations of the model on well-chosen input values called sigma points (Si). A detailed description of the 

methodology can be found in [15]. The mean ( G ) and the variance (
2

G ), for instance, are given by (1) and (2) 

respectively. 
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where U  is a vector with average input values, û is a vector with zero-mean random input variables,     is the 

expectation of a random variable and iw for          are weights. The expressions for higher-order statistical 

moments can be found in [15]. 
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 There are different ways of determining the sigma points, which correspond to the weights and values 

of the input parameters where the system must be evaluated. One possible set of sigma points is given by the 

solution of the system of nonlinear equations in (3) where k is the order of approximation. 
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where                are the weights,                are the input values in which the system must be 

evaluated around average,   is the order of the transform and     is the number of sigma points. A sigma point is 

characterized by its weight and parameter value. 

 The solution of (3) gives the minimum number of sigma points in order to correctly estimate the output 

statistical moments and thus it is the computationally cheapest. However, as the number of dimensions of the 

system increases, the solution of (3) becomes complex. 

 There’s a different set of sigma points which is much simpler to determine and is given by the 

following expressions [15]. 
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where     is the number of random variables and   is the vector with the input standard deviations. The set of 

sigma points given by (4) eliminates the need to solve a highly complicated system of nonlinear equations but it 

requires more evaluations of the system. Table 1 shows numerical values of    and    from (4) for problems 

with a number of random variables from 1 to 5, with 3 digits precision. 

Table 1. Sigma points and weights given by (4) with     and        . 

                    

1 0.056 (  )*1.732 0.111 (  )*1.732 

2 0.063 (  ,   )*1.414 0.063 {       and       }*2.000 

3 0.045              1.291 0.040             *2.236 

4 0.028              1.225 0.028             *2.449 

5 0.016              1.183 0.020             *2.646 

 

 Thus the UT consists briefly of calculating a set of sigma points by (3) or (4), evaluating the system at 

this set and applying (1) and (2) to obtain the average and standard deviation of the output variable. The only 

issue about the methodology is for high-dimensional systems, since the number of sigma points increases very 

fast with the dimensionality. 

ADAPTIVE UNSCENTED TRANSFORM 

An alternative method to the classical UT is described as follows: rank the input parameters by their 

influence on the output variable, apply the UT considering only the most important variable and successively one 

more variable at a time, following the order of importance and stop when convergence is reached. In a large-

scale system that only a few input parameters must be considered, this adaptive approach is very effective. 

Figure 1 presents an overview of the adaptive UT. 



 

 

 

Figure 1. Overview of adaptive Unscented Transform 

There are several approaches in order to classify the importance of input parameters on a given output 

variable, for instance [19] and [20]. In this paper, we consider the simplest way to estimate, which is based on 

the partial derivative of the output with respect to each input and on the amount of uncertainty of each input. 

Thus, the expression is: 
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where       is the importance of the i-th input variable,  
  

   
  is the partial derivative of the system   with 

respect to the i-th input and    is the i-th standard deviation. In this manner, both the derivative and the amount 

of uncertainty are taken into account. For instance, an input variable with a strong influence on the output but 

with very low uncertainty or an input variable with weak influence on the output and strong uncertainty may be 

low ranked compared to an input variable with medium influence and uncertainty. 

The partial derivative is computed by the approximate expression given below. 

 

(6)  
  

   
   

               

   
   , 

 

where    is the vector of nominal parameters and     is a small variation of the     parameter. In general, the 

value of     does not have a significant impact on the ranking procedure, as it is shown in the results section for 

model 1. 

 The convergence criterion is computed through the variance of the response for the mean and standard 

deviation, as follows: 

(7) 
                               

                               

where       is the variance of a random variable,        is the average of a random variable,   is an arbitrary 

positive integer and   is a given tolerance. In this paper, the parameters   and   were fixed to 500 and      , as 

these values must be chosen by the user depending on the required accuracy. 

In other words, the convergence is reached when the variance of the average value of the output is less 

than a given tolerance and the variance of the standard deviation is less than another given tolerance. This is a 

much fairer comparison with Monte Carlo. Many papers set a high number of simulations for Monte Carlo 

method without checking the convergence.  

 The adaptive UT has been implemented and tested in three different large-scale models. The first two 

models are analytical formulas with different kinds of non-linearity and dimensionality. The third model is a 

relatively high-fidelity model of a DC-DC Converter which takes into account many parasitic effects and 

imperfections. 

RESULTS 

Model 1 – Quadratic polynomial 

The first model to be analyzed is given by the following expression, 
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where        ,              follow independent normal Probability Density Functions (PDF) with 5% 

and 15% of standard deviation relatively to the average and the coefficients              are chosen so that 

there are 5 dominant input variables. Figure 2 presents the relative effect of all input variables on the output 

given by (5), with a         of the interval size, for           while Figure 3 presents the effect of 

changing the value of     in the ranking result, for parameters from number 60 to 82. Notice, in Figure 3, that 

parameters 75 and 77, for instance, have higher ranking than other parameters, no matter the     chosen. 

 

Figure 2. Model 1 – Ranking input variables 

 

Figure 3 – Comparison of     (5%, 10%, 15% and 20% of interval width) on ranking result 

 The coefficients    are randomly chosen to produce a generic model but the average of 5 coefficients is 

30 times the average of the rest of the coefficients. In this manner, a model with a subset of input dominant 

variables is created and shown by red arrows in Figure 2. 

 The results of Monte Carlo method and adaptive UT are presented and compared in Figure 4 and 5, for 

the two scenario of uncertainty. 

 



 

 

 

Figure 4. Results for Model 1, 5% Standard Deviation 

 

Figure 5. Results for Model 1, 15% Standard Deviation 

Figure 4 and 5 show the rapid convergence of the adaptive UT when computing the average and the 

standard deviation of the output.  

Table 2. Comparison between Monte Carlo and Adaptive Unscented Transform – Model 1 

Input Uncertainty Methodology Mean Standard Deviation # solver calls 

5% Monte Carlo 382.8046 9.5272 44200 

5% Adaptive UT 382.8015 9.3268 444 

15% Monte Carlo 823.8560 75.5047 200000 

15% Adaptive UT 822.6413 74.6990 444 

 

Model 2 – Logarithm, 4
th

 power and inner product 

The second model to be analyzed is given by the following expression, 
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where        ,              follow independent uniform PDF and the coefficients              are 

chosen so that there are 8 dominant input variables. Figure 6 presents the relative effect of all input variables on 

the output given by (5). 

 

Figure 6. Model 2 – Ranking input variables 

 

Figure 7. Results for Model 2, 20% interval  

 

Figure 8. Results for Model 2, 40% interval 



 

 

Table 3. Comparison between Monte Carlo and Adaptive Unscented Transform – Model 2 

Input Uncertainty Methodology Mean Standard Deviation # solver calls 

20% Monte Carlo 76.7156 0.6776 10000 

20% Adaptive UT 76.5069 0.6882 2557 

40% Monte Carlo 78.4996 1.4039 10000 

40% Adaptive UT 77.7902 1.5621 2557 

 

Model 3 

The third model to be analyzed is a model of a DC-DC Power Converter. Its schematic is shown in 

Figure 9. 

 

Figure 9. Model 3– Power Converter schematic 

The input variables of this model are the voltage source, resistances, capacitances, inductances and 

semiconductor parameters of the diode and MOSFET. The output variable is the FFT of the voltage across the 

resistor    in dB at 20kHz in the Line Impedance Stabilization Network (LISN). This output is a measure of the 

maximum conducted EMI. Thus, this problem is an example of a parametric uncertainty study of a power 

converter for the assessment  

The characteristics of the model are given as follows:        ,              follow independent 

uniform PDF and the coefficients              are chosen so that there are 8 dominant input variables. 

Figure 10 presents the relative effect of all input variables on the output given by (5). 

 



 

 

 

Figure 10. Model 3 – Sensitivity Analysis 

 

The relevant input variables of Figure 10 are described in more detail in Table 4. It can be seen that the 

parasitic effects of the converter have low impact on the conducted EMI at 20kHz, when compared to the 

nominal component values. 

 

Table 4. List of Important Components 

Index Parameter Mean Index Parameter Mean 

1 Input Voltage 200 V 6 Resistance    50 Ω 

2 Inductance    47.68 µH 7 Capacitance    270.65 nF 

3 Inductance    47.68 µH 8 C. decoupling       899.35 nF 

4 Capacitance    270.65 nF 9 C. decoupling       899.35 nF 

5 Resistance    50 Ω 10 Load resistance     132.97 Ω 

 

 

Figure 11. Results for Model 3, 10% interval 



 

 

 

Figure 12. Results for Model 3, 30% interval 

Table 5. Comparison between Monte Carlo and Adaptive Unscented Transform – Model 3 

Input Uncertainty Methodology Mean (dB) Standard Deviation # solver calls 

10% Monte Carlo -2.9224 0.9895 1000 

10% Adaptive UT -2.9371 0.9605 389 

30% Monte Carlo -2.9169 2.9849 >5000 

30% Adaptive UT -2.8436 3.0328 701 

 

The results presented in Figure 11 show that the convergence of the adaptive UT for the average value 

was achieved considerably faster than traditional Monte Carlo method. In Figure 12, the improvement brought 

by the adaptive UT is clear, especially for the assessment of the standard deviation. The results of Table 5 show 

good agreement between the two methodologies and encourage the further study of the adaptive UT. 

 

CONCLUSIONS 

An adaptive collocation method has been presented and successfully tested in three different large-scale 

models, whereas most of the traditional methodologies for uncertainty quantification can be unfeasible for high-

dimensional or high-computational cost models. It showed a much faster convergence rate than Monte Carlo 

method for similar accuracy. Moreover, the comparison with Monte Carlo was made for a given accuracy, thus 

being fairer than in other papers. Generally, one sets a very high number of simulations for the Monte Carlo 

whereas the convergence was reached much earlier. 

The first two models were analytical and used to illustrate the general idea of the methodology. The 

third model was a DC-DC Converter with uncertainty in all its parameters. The adaptive UT turned out to be a 

good alternative for a fast assessment of the average and standard deviation of the conducted EMI. 
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